Some extremal results on the connective eccentricity index of graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Connective Eccentricity Index of Graphs

The connective eccentricity index of a graph G is defined as ξce(G) = ∑ v∈V (G) d(v) ε(v) , where ε(v) and d(v) denote the eccentricity and the degree of the vertex v, respectively. In this paper we derive upper or lower bounds for the connective eccentricity index in terms of some graph invariants such as the radius, independence number, vertex connectivity, minimum degree, maximum degree etc....

متن کامل

Some Graphs with Extremal Pi Index

The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index, which reflects certain structural features of organic molecules. In this paper, we study the maximum PI indices and the minimum PI indices for trees and unicyclic graphs respectively.

متن کامل

Eccentric Connectivity Index: Extremal Graphs and Values

Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...

متن کامل

Extremal Results concerning the General Sum-connectivity Index in Some Classes of Connected Graphs

This paper surveys extremal properties of general sum-connectivity index χα(G) in several classes of connected graphs of given order for some values of the parameter α: a) trees; b) connected unicyclic or bicyclic graphs; c) graphs of given connectivity. Work presented as invited lecture at CAIM 2014, September 19-22, “Vasile Alecsandri” University of Bacău, Romania.

متن کامل

On ‎c‎omputing the general Narumi-Katayama index of some ‎graphs

‎The Narumi-Katayama index was the first topological index defined‎ ‎by the product of some graph theoretical quantities‎. ‎Let $G$ be a ‎simple graph with vertex set $V = {v_1,ldots‎, ‎v_n }$ and $d(v)$ be‎ ‎the degree of vertex $v$ in the graph $G$‎. ‎The Narumi-Katayama ‎index is defined as $NK(G) = prod_{vin V}d(v)$‎. ‎In this paper,‎ ‎the Narumi-Katayama index is generalized using a $n$-ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2016

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2015.08.027